Agent Run
An AgentRun
represents a complete agent run. It contains a collection of Transcript
objects, as well as metadata (scores, experiment info, etc.).
- In single-agent (most common) settings, each
AgentRun
contains a singleTranscript
. - In multi-agent settings, an
AgentRun
may contain multipleTranscript
objects. For example, in a two-agent debate setting, you'll have oneTranscript
per agent in the sameAgentRun
. - Docent's LLM search features operate over complete
AgentRun
objects. Runs are passed to LLMs in their.text
form.
Usage
AgentRun
objects require a dictionary of Transcript
objects, as well as a metadata dictionary whose keys are strings. The metadata should be JSON-serializable.
from docent.data_models import AgentRun, Transcript
from docent.data_models.chat import UserMessage, AssistantMessage
transcripts = [
Transcript(
messages=[
UserMessage(content="Hello, what's 1 + 1?"),
AssistantMessage(content="2"),
]
)
]
agent_run = AgentRun(
transcripts=transcripts,
metadata={
"scores": {"correct": True, "reward": 1.0},
}
)
Rendering
To see how your AgentRun
is being rendered to an LLM, you can print(agent_run.text)
. This might be useful for validating that your metadata is being included properly.
docent.data_models.agent_run
AgentRun
Bases: BaseModel
Represents a complete run of an agent with transcripts and metadata.
An AgentRun encapsulates the execution of an agent, storing all communication transcripts and associated metadata. It must contain at least one transcript.
Attributes:
Name | Type | Description |
---|---|---|
id |
str
|
Unique identifier for the agent run, auto-generated by default. |
name |
str | None
|
Optional human-readable name for the agent run. |
description |
str | None
|
Optional description of the agent run. |
transcripts |
list[Transcript]
|
List of Transcript objects. |
transcript_groups |
list[TranscriptGroup]
|
List of TranscriptGroup objects. |
metadata |
dict[str, Any]
|
Additional structured metadata about the agent run as a JSON-serializable dictionary. |
Source code in docent/data_models/agent_run.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
|
text
property
Concatenates all transcript texts with double newlines as separators.
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
A string representation of all transcripts. |
text_blocks
property
Concatenates all transcript texts using individual blocks format.
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
A string representation of all transcripts using individual message blocks. |
transcript_dict
property
transcript_dict: dict[str, Transcript]
Lazily compute and cache a mapping from transcript ID to Transcript.
transcript_group_dict
property
transcript_group_dict: dict[str, TranscriptGroup]
Lazily compute and cache a mapping from transcript group ID to TranscriptGroup.
get_filterable_fields
Returns a list of all fields that can be used to filter the agent run, by recursively exploring the model_dump() for singleton types in dictionaries.
Returns:
Type | Description |
---|---|
list[FilterableField]
|
list[FilterableField]: A list of filterable fields, where each field is a dictionary containing its 'name' (path) and 'type'. |
Source code in docent/data_models/agent_run.py
to_text
Represents an agent run as a list of strings, each of which is at most token_limit tokens under the GPT-4 tokenization scheme.
We'll try to split up long AgentRuns along transcript boundaries and include metadata. For very long transcripts, we'll have to split them up further and remove metadata.
Source code in docent/data_models/agent_run.py
to_text_blocks
Represents an agent run as a list of strings using individual message blocks, each of which is at most token_limit tokens under the GPT-4 tokenization scheme.
Unlike to_text() which uses action units, this method formats each message as an individual block.
Source code in docent/data_models/agent_run.py
get_canonical_tree
get_canonical_tree(full_tree: bool = False) -> dict[str | None, list[tuple[Literal['t', 'tg'], str]]]
Compute and cache the canonical, sorted transcript group tree.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
full_tree
|
bool
|
If True, include all transcript groups regardless of whether they contain transcripts. If False, include only the minimal tree that connects relevant groups and transcripts. |
False
|
Returns:
Type | Description |
---|---|
dict[str | None, list[tuple[Literal['t', 'tg'], str]]]
|
Canonical tree mapping parent group id (or "__global_root") to a list of |
dict[str | None, list[tuple[Literal['t', 'tg'], str]]]
|
children (type, id) tuples sorted by creation time. |
Source code in docent/data_models/agent_run.py
get_transcript_ids_ordered
Compute and cache the depth-first transcript id ordering.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
full_tree
|
bool
|
Whether to compute based on the full tree or the minimal tree. |
False
|
Returns:
Type | Description |
---|---|
list[str]
|
List of transcript ids in depth-first order. |